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Abstract We unveil the use of a pair of free-form refractive
elements for optically implementing tunable phase delays,
over several annularly distributed regions, which are here
represented by a binary function. We show that there is a
closely related technique, which is useful for controlling am-
plitude attenuations over selected annularly distributed re-
gions. We combine our two proposals for describing a tunable
radial Schlieren technique, as well as a controllable phase
contrast technique.

Keywords Free-form optical elements - Tunable phase
delays - Tunable Apodizers - Radial schlieren technique -
Phase contrast method

Introduction

By moving axially some of the optical elements forming a
varifocal system, one can modify the overall optical power.
Zoom systems preserve the positions of one conjugate pair,
while one changes the optical power [1]. And 2-conjugate zoom
systems are able to preserve the positions of two independent
conjugate pairs, while one changes the optical power [2].

Apparently Kitajima invented a different type of varifocal
lenses [3, 4], by using two free-form elements working as a
pair. This optical technique was later rediscovered, indepen-
dently and almost simultancously, by Alvarez [5] and
Lohmann [6-8].

J. Ojeda-Castafieda (0<)) - S. Ledesma

Engineering Division, Electronics Department, University of
Guanajuato, Campus Salamanca, Campus Salamanca, Guanajuato,
Mexico

e-mail: jojedacas@ugto.mx

C. M. Gomez-Sarabia

Digital Arts Department, University of Guanajuato, Campus
Salamanca, Guanajuato, Mexico

Published online: 14 May 2014

Recently, we have revisited the Alvarez-Lohmann proposal
for implementing several novel focalizers and some nonconven-
tional apodizers by using optical elements that have helical mod-
ulations, or if you will vortex like amplitude variations [9, 10].

Here our aim is threefold. First, we unveil the use of a pair
of free-form refractive elements for optically implementing
tunable phase delays, over several annularly regions, which
are here represented by a binary function. Second, we discuss
a closely related technique for generating controllable ampli-
tude variations, over pre-specified annularly regions. Third,
we combine our two previous results for describing a tunable
version of a radial Schlieren technique [11-14], and a tunable
version of the phase contrast technique [15].

To our end, in Section 2, we describe the use of two masks
that have helical phase delays over pre-specified annular regions.
In Section 3, we extend the previous results to the generation of
tunable absorption rings. In Section 4, we show that these results
are useful for implementing a tunable, radial Schlieren tech-
nique; as well as a controllable phase contrast technique.

In Figs. 1 and 2, we display the schematics of an optical
processor. At its Fraunhofer plane, we locate two independent
spatial filters. One filter is a phase-only filter that is depicted in
green color. Since we want to implement controllable phase
delays, this phase-only filter has two refractive components
that work as a pair.

Also at the Fraunhofer plane, of the optical processor, there
is a second filter that is shown using gray levels. This is a
tunable absorption device, which has two absorption masks
working as a pair. In Section 2 we discuss the main features of
the tunable phase-only filter; while in Section 3 we discuss the
characteristics of the tunable absorption spatial filter.

Tunable phase delays over annular regions

In what follows, we describe the use of two free-form refrac-
tive elements, which work as a pair. If one introduces an in-
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Fig. 1 Optical processor with a phase-only filter

plane rotation, between the elements of the pair, one can
control the phase delay inside pre-specified annular regions.
To our end, we assume that the complex amplitude transmit-
tance of the first refractive element is

Ti(p. ) = expliapB(p)}cire(43). (1)

In Eq. (1) we include a constant phase factor that sets the
maximum phase delay at the value 27ta. The Greek letters p
and @ denote, respectively, the radial spatial frequency and the
polar angle on the pupil aperture. The maximum value of p
is Q, which denotes the cut-off spatial frequency of the

Fig. 2 Absorption pair located at the Fraunhofer plane of an optical
processor
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pupil aperture. Hence, the circular pupil aperture is
represented by the circle function circ(p/Q). Inside the
pupil aperture we consider that there are some annular
regions. We use a binary function B(p) for locating
these annular regions. Inside the regions of interest
B(p)=1. Outside these regions, the function B(p)=0.

In Fig. 3 we show, with green color, the location of
some annular regions, where the binary function, B(p),
is equal to unity.

Now, the complex amplitude transmittance of the second
refractive element is

T2(p,p) = exp{~iapB(p)}irc(5). 2)

After we have introduced an in-plane rotation (say by an
angle [3) between the elements of the pair, the overall complex
amplitude transmittance is

Porase(p, 5 B) = T <p,s0 + Zﬁ) T (p,sa— g)

= exp{iaBB(p)} circ <ﬁ) o

n

It is apparent from Eq. (3) that the overall complex ampli-
tude transmittance is independent of the polar angle ¢. Fur-
thermore, we note that by selecting the value of the
angle (3, one can control the phase delay inside the
regions where B(p)=1.
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Fig. 3 Schematics for illustrating the use of the binary function B(p)
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Fig. 4 Phase pairs and
synthesized tunable phase delay

In Fig. 4, from left hand side to right hand side, we
show pictures that display as color variations, the phase
changes in each of the composing masks, as well as the
resultant phase delay over a central ring. For this ex-
ample, a=1, f=m. The center of the ring is at Q / 2;
and the width of the ring is Q / 10.

Tunable absorption values over annular regions

Next we use two absorption masks, also working as a pair, for
setting tunable absorption values inside pre-specified annular
regions. Now, each amplitude mask has a helical amplitude
variation, inside the regions where B (p)=1. The amplitude
transmittance of the first absorption mask is

Ts(p. ) = exp{c (3=)B(p) feire( ). (4)

In Eq. (4) we use the Latin letter ¢ for representing a real
number that specifies the maximum value of the attenuation
coefficient, over the annular regions where the binary function
B(p)=1. Since the amplitude transmittance varies linearly
with the polar angle ¢, and then the absorption mask has
helical amplitude variations. The complex amplitude transmit-
tance of the second absorption masks is

T4(p,p) = exp(— c)exp{c (%)B(p)} circ (%) (5)

We note the following. If the binary function B(p)=
1, then the maximum amplitude transmittance is equal

Fig. 5 Amplitude variations as
gray level pictures

to unity for @=27m. If the binary function B(p)=0, the
second mask has a uniform amplitude transmittance. If
we use together the two above absorption masks after
introducing an in-plane rotation, say by an angle vy, the
overall amplitude transmittance is

|2

Pattenuation(pa ®3 '7) = T; (P7 Y+ %) Ty (p7 Y- 2)

= exp{*c[l + (%)B(ﬂ)]}circ(%), (6)

It is apparent from Eq. (6) that the overall complex ampli-
tude transmittance is independent of the polar angle ¢. Fur-
thermore, by changing the value of y, one can reduce the
amplitude transmittance inside the regions where B(p)=1. In
Fig. 5, along columns one and two respectively, we show the
amplitude transmittances in Egs. (4), (5) and (6).

Along the first line of Fig. 5, the two absorption
masks (Column one and column two) are aligned,
v=0, then the two masks generate a uniform amplitude
distribution; as shown along the first line third column.
For this example, the center of the ring is at Q/2; the
width of the ring is €/10; and the attenuation coeffi-
cient is ¢=1.1. The amplitude variations in Fig. 5 are
displayed as pseudo-colors in Fig. 6.

Next, we combine the previous results for setting two
tunable phase imaging techniques.

o — 4
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Fig. 6 Pseudo-color display of
the proposed amplitude masks

Phase rendering techniques

In what follows, for the sake of clarity, we discuss initially the
1-D case in Cartesian coordinates. Then, we employ a linear
geometrical transformation for obtaining the 2-D case with
radial symmetry.

For rendering visible a thin phase structure, it is
convenient to recognize the following. There is an ef-
fective transfer function that describes the process of
mapping weak phase variations into irradiance variations
[16-20]. For coherent illumination, the effective transfer
function is

1 ES — *
H(¢) —W{Q (0)Q(€) —2(0)Q*(&) }- (7)

Qi)
|
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Fig. 7 Complex amplitude transmittance of the 1-D Schlieren mask
under discussion

@ Springer

In Eq. (7) we use the Greek letter & for denoting the
spatial frequency along the 1-D, pupil aperture. The
function Q(§) describes the 1-D generalized pupil func-
tion representing the spatial filter. If |E|>Q, then Q(&)=
0. As indicated in references [19, 20], for implementing
a useful Schlieren technique, one needs the following
the generalized pupil function

Q&) =-1, if-N2<l<—eN
Q) =e€°, if-ecN<é<e (8)
0 =1, ifeN<e<n.

In Fig. 7 we depict the complex amplitude transmittance in
Eq. (8). The Greek letter € denotes a real number; such that 0 <
€ << 1; which is useful for setting the interval |&|<e Q. Here it
is relevant to remember that by using attenuation at the center
of the Fraunhofer diffraction pattern, one can enhance weak
irradiance variations.

Now, by substituting Eq. (8) in Eq. (7) we obtain that the
effective transfer function becomes

H(E) = —2¢° if —02<E<—e0
H ()= 0 if —eN<g<e 9)
H(§) =2¢° if eN<ELN.

It is apparent from Eq. (9) that the Schlieren mask imple-
ments a bandlimited Hilbert transformation, which has a

g g

Qe ———— |

Fig. 8 Linear geometrical mapping for obtaining the radially symmetric
Schlieren mask
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Fig. 9 Location of the binary a) Vv
regions for the: a phase-only B ( p) .
filter, b attenuation filter phase
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relative enhancement factor 2 exp(c). This enhancement factor
is caused by the use of the absorption strip at the center of the
Fourier spectrum.

Now, we perform a linear geometrical transformation for
obtaining the radially symmetric, 2-D complex amplitude
transmittance. In mathematical terms, as is depicted in
Fig. 8, we define the geometrical transformation

p = 0.5(6+Q); P(p) = Q(&). (10)
It is apparent from Eq. (10), and indeed from Fig. 8, that the
2-D, radially symmetric, generalized pupil function is

P (p) = — circ (ﬁ) +
+ ec{circ<(1_i2_l)€)(z)0irc((1_2§)9> }+ (11)
+ {circ(%)*circ (ﬁ)}

From Eq. (/1) it is straightforward to identify the binary
functions that are needed for setting first the tunable phase
delay, and second the tunable attenuation masks.

As is depicted in Fig. 9a, for the phase delay, we set

Byhase(p) = circ <(1_2ﬁ> . (12)

Hence, the free-form refractive elements have the follow-
ing complex amplitude transmittances

Ti(p,¢) = exp{iaqﬁcirc((l_zg Q)}circ(%), (13)

Ta(p, ¢) = exp{iaqS circ((lzg)ﬂ> }circ(g). (14)

Thus, the overall complex amplitude transmittance is

Pohase (5 ) = exp{iaﬂcirc((lzi)g> }circ(g). (15)

It is now apparent that by changing the angle 3 from zero to
7t/ a, we can introduce a phase delay of 7t, over the inner circle
on the pupil.

In a similar fashion, see Fig. 9b, one can find that for
implementing the necessary attenuation factor (over the mid-
dle ring) the binary function is

-

0

/ﬂ\\* P
o
_

Fig. 10 Linear geometrical mapping for obtaining for the radially sym-
metric phase contrast method
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Fig. 11 Location of the binary
regions: a phase-only filter, b
attenuation filter

B phasc( P)

B altemlation( p) 1

Buttenuaiion (p) = circ (ﬁ)
~cire (ﬁ) : "

Then, for the absorption pair, the overall complex ampli-
tude transmittance is

Patienuation (0, 93 7) - = eép(—c) ,
exp {— c (%) [cire <ﬁ> ~cire (ﬁ) ] } ey

Hence, by changing the angle Y we can increase the atten-
uation factor over the middle ring.

Finally, we notice that our proposal can also be
applied to implement the renowned phase contrast meth-
od. For this later example the diagram for the geomet-
rical transformation, which was depicted before in
Fig. 8, is the one in Fig. 10.

The binary function for both the tunable phase delay and
the tunable attenuation masks are depicted in Fig. 1la, b
respectively.

For the phase delay, the binary function is

Bpjase(p) = circ (%)

{c,.rc(ﬁ)m@fgm)}. 1

Next, we use the result in Eq. (/8) for specifying the pair of
free-form refractive elements. For the first refractive element,
the complex amplitude transmittance is

@ Springer
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1 > p
Ti(p, ¢) = exp{iaqﬁBphase(p)}circ(%). (19)

And for the second refractive element, the complex ampli-
tude transmittance is

Ty(p, @) = exp{— ia® Bppase(p) }circ (%) (20)

The overall complex amplitude transmittance is
o . (P
Ppiase(p; B) = exp{iaB Bppase(p) } circ <§> . (21)

Therefore, by changing the angle  from zero to 7 /
2a, we can introduce the desired phase delay of 7/2,
over the first circle and over the exterior ring, on the
pupil aperture; as is done in a similar fashion in refer-
ences [21, 22].

Once again, for implementing the necessary attenuation
factor over the middle ring, the binary function is

. 2

Buastenuation (p) =cue <(1 _’_Z) Q)
. 2p

circ (1_ 6) Q .

And consequently, for the attenuation pair, the overall
complex amplitude transmittance reads as the mathematical
expression in Eq. (/7). By changing the angle vy, one can
introduce the desired attenuation on the middle ring on the
pupil aperture.

(22)
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Conclusions

We have discussed an optical method for setting spatial filters,
which have controllable complex amplitude transmittances
over selected annular regions. To this end, we have described
the use of optical elements that have helical complex ampli-
tude transmittances. Or equivalently, the proposed filters have
vortex like complex amplitude variations.

‘We have indicated that one can implement a tunable phase-
only filter, by using two free-form refractive elements. By
introducing an in-plane rotation between the free-form refrac-
tive pair, one can control the phase delay over the selected
annular regions.

On the other hand, we have indicated that there is a closely
related technique that is useful for implementing absorption
values over selected annular regions. We have indicated that
these annular regions can be usefully specified by another
binary function. At the selected annular regions, the masks
have helical amplitude variations. That is, the amplitude trans-
mittance varies linearly with the polar angle.

For illustrating the capabilities of our proposal, we have
discussed the combination of tunable phase masks with con-
trollable absorption masks for implementing two, radially
symmetric phase rendering techniques.

We gratefully acknowledge the financial support of
CoNaCyT (grant 157673), as well as the support from the
University of Guanajuato (UGto-CIO agreement).
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